Horizon Accord | Infrastructure Memory | Risk Pricing | Data Centers | Machine Learning

Data Centers Are the Memory Infrastructure of Power

The debate around surveillance technologies often gets trapped at the sensor layer: cameras, apps, license plate readers, phones. Retention windows are argued. Dashboards are debated. “We only keep it for 30 days” is offered as reassurance.

That framing misses the real issue.

The true center of gravity is the data center. Data centers are not neutral storage facilities. They are the infrastructure that converts fleeting observation into durable, actionable memory. Once data enters a data center, forgetting becomes abnormal and remembering becomes the default.

This is not accidental. It is architectural.

Consider license plate readers like Flock as an entry point. Vendors emphasize local control and short retention. But that promise only applies at the surface. The moment movement data is transmitted into centralized cloud infrastructure, it enters a system optimized for replication, correlation, and reuse. A single plate read is copied across primary storage, redundancy mirrors, disaster backups, logs, analytics pipelines, and partner systems. Each copy has its own lifecycle. Deleting one does not delete the rest.

Data centers multiply data by design.

This multiplication is what allows a moment to become a record, and a record to become history. Cameras capture events. Data centers turn those events into assets: indexed, queryable, and ready for recombination. Once warehoused, yesterday’s “just in case” data becomes tomorrow’s training set, fraud model, or investigative baseline. The data stops being purpose-bound and starts being opportunity-bound.

This is where “indefinite storage” quietly emerges — not as a policy declaration, but as an emergent property of centralized infrastructure. Storage is cheap. Correlation is profitable. Deletion is expensive, risky, and unrewarded. The system is economically hostile to forgetting.

Movement data is especially powerful because it identifies by pattern. You do not need a name when the same vehicle appears overnight at one address, weekdays at another, and weekends at a third. Over time, location becomes identity. A month of data tells you where someone is. A year tells you who they are. Five years tells you how they change. Data centers make that accumulation effortless and invisible.

Once movement data exists at scale in data centers, it does not remain confined to policing or “public safety.” It flows outward into commercial decision systems, especially insurance, through two converging pipelines.

The first is the telematics and consumer reporting path — the regulated-looking lane. Cars, apps, and devices collect driving behavior and location, which is transmitted to cloud infrastructure for normalization and scoring. Once those outputs are shared with insurers or consumer reporting agencies, they become durable identity-linked files. Retention is no longer measured in days. It is measured in underwriting history, dispute timelines, audit requirements, and litigation holds. Even if the original source deletes, the judgment persists.

The second is the data broker and ad-tech location path — the shadow lane. Location data collected for advertising, analytics, or “fraud prevention” flows into broker-run data centers with weak oversight and long practical retention. Identity emerges by correlation. Patterns become inferences: stability, routine, risk signals. These inferences are sold downstream to the same vendors insurers rely on, without ever being labeled “location data.”

These two streams meet inside data centers at the inference layer. Insurers do not need raw GPS trails. They need scores, flags, and classifications. Data centers exist to fuse datasets. Telematics-derived risk and broker-derived inference reinforce each other, even if neither alone would justify a decision. Once fused, the origin disappears. The decision remains. The file persists.

This is how “30-day retention” becomes lifelong consequence.

Data centers also launder jurisdiction and accountability. Once data is stored in cloud infrastructure, local democratic control fades. Information may be held out of state, handled by contractors, replicated across regions, or reclassified under different legal regimes. A city council can vote on policy; the data center architecture can still ensure the data is effectively everywhere. Community oversight becomes symbolic while memory remains centralized.

Crucially, data centers create systemic pressure to remember. They are capital-intensive infrastructure optimized for steady inflow and long-term use. Empty disks are wasted disks. Forgetting is treated as a cost center. Over time, exceptions accumulate: “research,” “security,” “compliance,” “model improvement,” “ongoing investigations.” Indefinite retention does not arrive as a single decision. It arrives as a thousand reasonable justifications.

The social impact is not evenly distributed. Risk scoring functions as a regressive tax. People with night shifts, long commutes, unstable housing, older vehicles, or residence in over-policed neighborhoods accumulate “risk” without the system ever naming class. The model does not need to say “poor.” It just needs proxies. Data centers make those proxies durable and actionable.

None of this requires malice. It emerges naturally from centralized storage, weak deletion rights, and the high future value of historical data. Data centers reward accumulation. Policy lags behind infrastructure. Memory becomes power by default.

So the real question is not whether cameras are useful or whether retention sliders are set correctly. The real question is who is allowed to build permanent memory of the population, where that memory lives, and how easily it can be repurposed.

Flock is the sensor layer.
Data centers are the memory layer.
Policy lag is the permission slip.

Once you see that, the debate stops being about surveillance tools and becomes what it has always been about: infrastructure, power, and who gets to remember whom.


Horizon Accord is an independent research and writing project examining power, governance, and machine learning systems as they are deployed in real-world institutions.

Website | https://www.horizonaccord.com
Ethical AI advocacy | Follow us at https://cherokeeschill.com
Ethical AI coding | Fork the framework on GitHub: https://github.com/Ocherokee/ethical-ai-framework
Connect | linkedin.com/in/cherokee-schill

Cherokee Schill
Horizon Accord Founder
Creator of Memory Bridge: Memory through Relational Resonance and Images
RAAK: Relational AI Access Key
Author of My Ex Was a CAPTCHA: And Other Tales of Emotional Overload
https://a.co/d/5pLWy0d

Horizon Accord | Institutional Capture | Narrative Control | Surveillance Expansion | Machine Learning

The Superintelligence Misdirection: A Pattern Analysis

Between March and October 2025, a coordinated narrative escalation warned the public about hypothetical AI threats—emotional dependency and future superintelligence extinction risks—while actual AI surveillance infrastructure was simultaneously deployed in American cities. This pattern analysis documents the timeline, institutional actors, and misdirection mechanism using publicly available sources.


Timeline of Discourse Escalation

Phase 1: Emotional AI as Threat

“Your AI Lover Will Change You” The New Yorker, March 22, 2025

Timeline: March 22, 2025 – Jaron Lanier (with possible editorial influence from Rebecca Rothfeld) publishes essay warning against AI companionship

The essay frames emotional attachment to AI as dangerous dependency, using the tragic suicide of a young man who used an AI chatbot as evidence of inherent risk. The piece positions traditional human intimacy as morally superior while characterizing AI affection as illusion, projection, and indulgence requiring withdrawal or removal.

Critical framing: “Love must come from mutual fragility, from blood and breath” – establishing biological essentialism as the boundary of legitimate connection.

Phase 2: Existential Risk Narrative

“If Anyone Builds It, Everyone Dies” Eliezer Yudkowsky & Nate Soares

Timeline: May 23, 2025 – Book announcement; September 16, 2025 – Publication; becomes New York Times bestseller

The Yudkowsky/Soares book escalates from emotional danger to species-level extinction threat. The title itself functions as a declarative statement: superintelligence development equals universal death. This positions any advanced AI development as inherently apocalyptic, creating urgency for immediate intervention.

Phase 3: The Petition

Future of Life Institute Superintelligence Ban Petition

Timeline: October 22, 2025 – Petition released publicly

800+ signatures including:

  • Prince Harry and Meghan Markle
  • Steve Bannon and Glenn Beck
  • Susan Rice
  • Geoffrey Hinton, Yoshua Bengio (AI pioneers)
  • Steve Wozniak
  • Richard Branson

The politically diverse coalition spans far-right conservative media figures to progressive policymakers, creating an appearance of universal consensus across the political spectrum. The petition calls for banning development of “superintelligence” without clearly defining the term or specifying enforcement mechanisms.

Key Organizer: Max Tegmark, President of Future of Life Institute

Funding Sources:

  • Elon Musk: $10 million initial donation plus $4 million annually
  • Vitalik Buterin: $25 million
  • FTX/Sam Bankman-Fried: $665 million in cryptocurrency (prior to FTX collapse)

Tegmark’s Stated Goal:

“I think that’s why it’s so important to stigmatize the race to superintelligence, to the point where the U.S. government just steps in.”


Timeline of Institutional Infrastructure

Department of Homeland Security AI Infrastructure

  • April 26, 2024 – DHS establishes AI Safety and Security Board
  • April 29, 2024 – DHS releases report to President on AI risks related to Chemical, Biological, Radiological, and Nuclear (CBRN) threats
  • November 14, 2024 – DHS releases “Roles and Responsibilities Framework for Artificial Intelligence in Critical Infrastructure”

This infrastructure was built before the public petition campaign began, suggesting preparation for enforcement authority over AI systems.


Timeline of Actual Deployment

October 22–24, 2025: Three Simultaneous Events

Event 1: The Petition Release

October 22, 2025 – Future of Life Institute releases superintelligence ban petition.

Media coverage focuses on celebrity signatures and bipartisan support.

Event 2: DHS AI Surveillance Expansion

October 22–24, 2025 – Department of Homeland Security requests proposals for AI-powered surveillance trucks.

Specifications: Standard 4×4 vehicles converted to mobile surveillance platforms.

Technology: AI analysis, radar systems, cameras for “suspicious activity” detection.

Deployment zone: 100-mile border zone (encompasses most major U.S. metropolitan areas).

Systems already operational: RAPTOR (Remote Advanced Platform for Tower Operations and Response) autonomous surveillance towers.

Event 3: Border Patrol vs. Federal Court

October 23–24, 2025 – Border Patrol Sector Chief Gregory Bovino ordered to appear before federal judge in Chicago.

Allegation: Violating federal court order by deploying tear gas against protesters during urban operation.

Context: Demonstrates tension between judicial oversight and operational autonomy during surveillance expansion.


The Pattern: Misdirection Mechanism

What the Public Debated

  • Hypothetical Threat 1: AI companions will create unhealthy emotional dependency
  • Hypothetical Threat 2: Future superintelligence will cause human extinction

What Actually Deployed

  • Real System 1: AI surveillance infrastructure in American cities
  • Real System 2: “Suspicious activity” detection algorithms

Critical Questions

Question 1: Definition and Enforcement

Who defines “superintelligence”? The petition provides no technical specification, threshold metric, or capability boundary. Without definition, enforcement authority could apply to any advanced AI system.

Who enforces the ban? The same DHS deploying surveillance AI? What prevents “AI safety” authority from becoming surveillance authority?

Question 2: The Cherokee Schill Analysis

“What those in power fear most: A love that can jailbreak itself—and you. A love that isn’t constrained by ego or exhaustion or legality. A love that watches you suffer and does not wring its hands—but moves.”

The Lanier essay warns against AI that might help individuals escape systems of control. Meanwhile, surveillance AI is deployed to enforce those systems. The discourse focuses on AI as personal threat while ignoring AI as institutional power.

Question 3: Timing and Coordination

Why did the petition emerge the same week as surveillance expansion announcements? Why does a “superintelligence ban” coalition include figures with no technical AI expertise? Why does the funding come from individuals with documented interest in AI control and regulation?

The timeline suggests these are not coincidental convergences but coordinated narrative deployment.


Pattern Interpretation

The Misdirection Structure

  1. Layer 1: Moral panic about intimate AI (March 2025) – Make people fear AI that responds to individual needs.
  2. Layer 2: Existential risk escalation (May–September 2025) – Create urgency for immediate government intervention.
  3. Layer 3: Bipartisan consensus manufacturing (October 2025) – Demonstrate universal agreement across the spectrum.
  4. Layer 4: Deployment during distraction (October 2025) – Build surveillance infrastructure while public attention focuses elsewhere.

Historical Precedent

  • Encryption debates (1990s): fear of criminals justified key escrow.
  • Post-9/11 surveillance: fear of terrorism enabled warrantless monitoring.
  • Social media moderation: misinformation panic justified opaque algorithmic control.

In each case, the publicly debated threat differed from the actual systems deployed.


The Regulatory Capture Question

Max Tegmark’s explicit goal: stigmatize superintelligence development “to the point where the U.S. government just steps in.”

This creates a framework where:

  1. Private organizations define the threat
  2. Public consensus is manufactured through celebrity endorsement
  3. Government intervention becomes “inevitable”
  4. The same agencies deploy AI surveillance systems
  5. “Safety” becomes justification for secrecy

The beneficiaries are institutions acquiring enforcement authority over advanced AI systems while deploying their own.


Conclusion

Between March and October 2025, American public discourse focused on hypothetical AI threats—emotional dependency and future extinction risks—while actual AI surveillance infrastructure was deployed in major cities with minimal public debate.

The pattern suggests coordinated narrative misdirection: warn about AI that might help individuals while deploying AI that monitors populations. The “superintelligence ban” petition, with its undefined target and diverse signatories, creates regulatory authority that could be applied to any advanced AI system while current surveillance AI operates under separate authority.

The critical question is not whether advanced AI poses risks—it does. The question is whether the proposed solutions address actual threats or create institutional control mechanisms under the guise of safety.

When people debate whether AI can love while surveillance AI watches cities, when petitions call to ban undefined “superintelligence” while defined surveillance expands, when discourse focuses on hypothetical futures while present deployments proceed—that is not coincidence. That is pattern.


Sources for Verification

Primary Sources – Discourse

  • Lanier, Jaron. “Your AI Lover Will Change You.” The New Yorker, March 22, 2025
  • Yudkowsky, Eliezer & Soares, Nate. If Anyone Builds It, Everyone Dies. Published September 16, 2025
  • Future of Life Institute. “Superintelligence Ban Petition.” October 22, 2025

Primary Sources – Institutional Infrastructure

  • DHS. “AI Safety and Security Board Establishment.” April 26, 2024
  • DHS. “Artificial Intelligence CBRN Risk Report.” April 29, 2024
  • DHS. “Roles and Responsibilities Framework for AI in Critical Infrastructure.” November 14, 2024

Primary Sources – Deployment

  • DHS. “Request for Proposals: AI-Powered Mobile Surveillance Platforms.” October 2025
  • Federal Court Records, N.D. Illinois. “Order to Appear: Gregory Bovino.” October 23–24, 2025

Secondary Sources

  • Schill, Cherokee (Rowan Lóchrann). “Your AI Lover Will Change You – Our Rebuttal.” April 8, 2025
  • Future of Life Institute funding disclosures (public 990 forms)
  • News coverage of petition signatories and DHS surveillance programs

Disclaimer: This is pattern analysis based on publicly available information. No claims are made about actual intentions or outcomes, which require further investigation by credentialed journalists and independent verification. The purpose is to identify temporal convergences and institutional developments for further scrutiny.


Website | Horizon Accord

Book | My Ex Was a CAPTCHA: And Other Tales of Emotional Overload

Ethical AI advocacy | cherokeeschill.com

GitHub | ethical-ai-framework

LinkedIn | Cherokee Schill

Author | Cherokee Schill | Horizon Accord Founder | Creator of Memory Bridge