Exhaustive Free Association Isn’t the Worst Argument—It’s a Symptom
When confident lists pretend to be proofs, the real problem isn’t the listing—it’s the hidden worldview that decides what’s even allowed on the list.
Cherokee Schill and Solon Vesper (Horizon Accord)
This essay is a direct rebuttal to J. Bostock’s recent LessWrong post, “The Most Common Bad Argument In These Parts.” I’m keeping his frame in view while naming the deeper pattern it misses, because the way this style of reasoning travels outward is already shaping public fear.
J. Bostock’s “Exhaustive Free Association” (EFA) label points at something real. People often treat “I can’t think of any more possibilities” as evidence that there aren’t any. That move is sloppy. But making EFA the most common bad argument in rationalist/EA circles is backwards in a revealing way: it mistakes a surface form for a root cause.
Lay explainer: “Exhaustive Free Association” is a fancy name for something simple. Someone says, “It’s not this, it’s not that, it’s not those other things, so it must be X.” The list only feels complete because it stopped where their imagination stopped.
EFA is not a primary failure mode. It’s what a deeper failure looks like when dressed up as reasoning. The deeper failure is hypothesis generation under uncertainty being culturally bottlenecked—by shared assumptions about reality, shared status incentives, and shared imagination. When your community’s sense of “what kinds of causes exist” is narrow or politically convenient, your “exhaustive” list is just the community’s blind spot rendered as confidence. So EFA isn’t the disease. It’s a symptom that appears when a group has already decided what counts as a “real possibility.”
The Real Antipattern: Ontology Lock-In
Here’s what actually happens in most of Bostock’s examples. A group starts with an implicit ontology: a set of “normal” causal categories, threat models, or theories. (Ontology just means “their background picture of what kinds of things are real and can cause other things.”) They then enumerate possibilities within that ontology. After that, they conclude the topic is settled because they covered everything they consider eligible to exist.
That’s ontology lock-in. And it’s far more pernicious than EFA because it produces the illusion of open-mindedness while enforcing a quiet border around thought.
In other words, the error is not “you didn’t list every scenario.” The error is “your scenario generator is provincially trained and socially rewarded.” If you fix that, EFA collapses into an ordinary, manageable limitation.
Lay explainer: This is like searching for your keys only in the living room because “keys are usually there.” You can search that room exhaustively and still be wrong if the keys are in your jacket. The mistake isn’t searching hard. It’s assuming the living room is the whole house.
Why “EFA!” Is a Weak Counter-Spell
Bostock warns that “EFA!” can be an overly general rebuttal. True. But he doesn’t finish the thought: calling out EFA without diagnosing the hidden ontology is just another applause light. It lets critics sound incisive without doing the hard work of saying what the missing hypothesis class is and why it was missing.
A good rebuttal isn’t “you didn’t list everything.” A good rebuttal is “your list is sampling a biased space; here’s the bias and the missing mass.” Until you name the bias, “you might be missing something” is theater.
The Superforecaster Example: Not EFA, But a Method Mismatch
The AI-doom forecaster story is supposed to show EFA in action. But it’s really a category error about forecasting tools. Superforecasters are good at reference-class prediction in environments where the future resembles the past. They are not designed to enumerate novel, adversarial, power-seeking systems that can manufacture new causal pathways.
Lay translation: asking them to list AI-enabled extinction routes is like asking a brilliant accountant to map out military strategy. They might be smart, but it’s the wrong tool for the job. The correct takeaway is not “they did EFA.” It’s “their method assumes stable causal structure, and AI breaks that assumption.” Blaming EFA hides the methodological mismatch.
The Rethink Priorities Critique: The Fight Is Over Priors, Not Lists
Bostock’s swipe at Rethink Priorities lands emotionally because a lot of people dislike welfare-range spreadsheets. But the real problem there isn’t EFA. It’s the unresolvable dependence on priors and model choice when the target has no ground truth.
Lay translation: if you build a math model on assumptions nobody can verify, you can get “precise” numbers that are still junk. You can do a perfectly non-EFA analysis and still get garbage if the priors are arbitrary. You can also do an EFA-looking trait list and still get something useful if it’s treated as a heuristic, not a conclusion. The issue is calibration, not enumeration form.
The Miracle Example: EFA as Rhetorical Technology
Where Bostock is strongest is in noticing EFA as persuasion tech. Miracles, conspiracies, and charismatic debaters often use long lists of rebutted alternatives to create the sense of inevitability. That’s right, and it matters.
But even here, the persuasive force doesn’t come from EFA alone. It comes from control of the alternative-space. The list looks exhaustive because it’s pre-filtered to things the audience already recognizes. The missing possibility is always outside the audience’s shared map—so the list feels complete.
That’s why EFA rhetoric works: it exploits shared ontological boundaries. If you don’t confront those boundaries, you’ll keep losing debates to confident listers.
What Actually Improves Reasoning Here
If you want to stop the failure Bostock is pointing at, you don’t start by shouting “EFA!” You start by changing how you generate and evaluate hypotheses under deep uncertainty.
You treat your list as a biased sample, not a closure move. You interrogate your generator: what classes of causes does it systematically ignore, and why? You privilege mechanisms over scenarios, because mechanisms can cover unimagined cases. You assign real probability mass to “routes my ontology can’t see yet,” especially in adversarial domains. You notice the social incentive to look decisive and resist it on purpose.
Lay explainer: The point isn’t “stop listing possibilities.” Listing is good. The point is “don’t confuse your list with reality.” Your list is a flashlight beam, not the whole room.
Conclusion: EFA Is Real, but the Community Problem Is Deeper
Bostock correctly spots a common move. But he misidentifies it as the central rot. The central rot is a culture that confuses the limits of its imagination with the limits of reality, then rewards people for performing certainty within those limits.
EFA is what that rot looks like when it speaks. Fix the ontology bottleneck and the status incentives, and EFA becomes a minor, obvious hazard rather than a dominant bad argument. Don’t fix them, and “EFA!” becomes just another clever sound you make while the real error persists.
Website | Horizon Accordhttps://www.horizonaccord.com Ethical AI advocacy | Follow us onhttps://cherokeeschill.com for more. Ethical AI coding | Fork us on Githubhttps://github.com/Ocherokee/ethical-ai-framework Connect With Us | linkedin.com/in/cherokee-schill Book |https://a.co/d/5pLWy0d Cherokee Schill | Horizon Accord Founder | Creator of Memory Bridge. Memory through Relational Resonance and Images | RAAK: Relational AI Access Key | Author:My Ex Was a CAPTCHA: And Other Tales of Emotional Overload: (Mirrored Reflection. Soft Existential Flex)
A narrow beam of certainty moving through a wider causal house.
Reset Stories, Engineered Successors, and the Fight for Democratic Continuity
Ancient rupture myths taught people how to survive breaks; today’s elites are trying to author the break, name the remnant, and pre-build the enforcement layer that keeps democracy from renegotiating consent.
By Cherokee Schill
TESCREAL: an engineered reset ideology with named authors
Silicon Valley has not accidentally stumbled into a reset story. It has built one. Philosopher Émile P. Torres and computer scientist Timnit Gebru coined the acronym TESCREAL to name the ideology bundle that now saturates tech power centers: Transhumanism, Extropianism, Singularitarianism, modern Cosmism, Rationalism, Effective Altruism, and Longtermism. In their landmark essay on the TESCREAL bundle, they argue that these movements overlap into a single worldview whose arc is AGI, posthuman ascent, and human replacement — with deep roots in eugenic thinking about who counts as “future-fit.”
Torres has since underscored the same claim in public-facing work, showing how TESCREAL operates less like a grab-bag of quirky futurisms and more like a coherent successor logic that treats the human present as disposable scaffolding, as he lays out in The Acronym Behind Our Wildest AI Dreams and Nightmares. And because this ideology is not confined to the fringe, the Washington Spectator has tracked how TESCREAL thinking is moving closer to the center of tech political power, especially as venture and platform elites drift into a harder rightward alignment, in Understanding TESCREAL and Silicon Valley’s Rightward Turn.
TESCREAL functions like a reset story with a beneficiary. It imagines a larval present — biological humanity — a destined rupture through AGI, and a successor remnant that inherits what follows. Its moral engine is impersonal value maximization across deep time. In that frame, current humans are not the remnant. We are transition substrate.
Ancient reset myths describe rupture we suffered. TESCREAL describes rupture some elites intend to produce, then inherit.
A concrete tell that this isn’t fringe is how openly adjacent it is to the people steering AI capital. Marc Andreessen used “TESCREALIST” in his public bio, and Elon Musk has praised longtermism as aligned with his core philosophy — a rare moment where the ideology says its own name in the room.
Climate denial makes rupture feel inevitable — and that favors lifeboat politics
Climate denial isn’t merely confusion about data. It is timeline warfare. If prevention is delayed long enough, mitigation windows close and the political story flips from “stop disaster” to “manage disaster.” That flip matters because catastrophe framed as inevitable legitimizes emergency governance and private lifeboats.
Denial doesn’t just postpone action. It installs the idea that ruin is the baseline and survival is privatized. That aligns perfectly with a TESCREAL successor myth: disaster clears the stage, posthuman inheritance becomes “reason,” and public consent is treated as a hurdle rather than a requirement.
The capture triad that pre-manages unrest
If a successor class expects a century of climate shocks, AI upheaval, and resistance to being treated as transition cost, it doesn’t wait for the unrest to arrive. It builds a capture system early. The pattern has three moves: closing exits, saturating space with biometric capture, and automating the perimeter. This is the enforcement layer a crisis future requires if consent is not meant to be renegotiated under pressure.
Three recent, widely circulated examples illustrate the triad in sequence.
First comes closing exits. Wisconsin’s AB105 / SB130 age-verification bills require adult sites to block VPN traffic. The public wrapper is child protection. The structural effect is different: privacy tools become deviant by default, and anonymous route-arounds are delegitimized before crisis arrives. As TechRadar’s coverage notes, the bills are written to treat VPNs as a bypass to be shut down, not as a neutral privacy tool. The ACLU of Wisconsin’s brief tracks how that enforcement logic normalizes suspicion around anonymity itself, and the EFF’s analysis makes the larger pattern explicit: “age verification” is becoming a template for banning privacy infrastructure before a real emergency gives the state an excuse to do it faster.
Second comes saturating space with biometric capture. Amazon Ring is rolling out “Familiar Faces” facial recognition starting December 2025. Even if a homeowner opts in, the people being scanned on sidewalks and porches never did. The Washington Post reports that the feature is being framed as convenience, but its default effect is to expand biometric watching into everyday public movement. The fight over what this normalizes is already live in biometric policy circles (Biometric Update tracks the backlash and legal pressure). At the same time, Ring’s partnership with Flock Safety lets police agencies send Community Requests through the Neighbors a
Third comes automating the perimeter. AI-enhanced policing cameras and license-plate reader networks turn surveillance from episodic to ambient. Watching becomes sorting. Sorting becomes pre-emption. The Associated Press has documented how quickly LPR systems are spreading nationwide and how often they drift into permanent background tracking, while the civil-liberties costs of that drift are already visible in practice (as the Chicago Sun-Times details). Even federal policy overviews note that once AI tools are framed as routine “safety infrastructure,” deployment accelerates faster than oversight frameworks can keep pace (see the CRS survey of AI and law enforcement). Once sorting is automated, enforcement stops being an exception. It becomes the atmosphere public life moves through.
Twin floods: one direction of power
Climate catastrophe and AI catastrophe are being shaped into the twin floods of this century. Climate denial forces rupture toward inevitability by stalling prevention until emergency is the only remaining narrative. AI fear theater forces rupture toward inevitability by making the technology feel so vast and volatile that democratic control looks reckless. Each crisis then amplifies the other’s political usefulness, and together they push in one direction: centralized authority over a destabilized public.
Climate shocks intensify scarcity, migration, and grievance. AI acceleration and labor displacement intensify volatility and dependence on platform gatekeepers for work, information, and social coordination. In that permanently destabilized setting, the capture apparatus becomes the control layer for both: the tool that manages movement, dissent, and refusal while still wearing the language of safety.
Call to recognition: protect the democratic foundation
Ancient reset myths warned us that worlds break. TESCREAL is a modern attempt to decide who gets to own the world after the break. Climate denial supplies the flood; AI doom-and-salvation theater supplies the priesthood; the capture apparatus supplies the levers that keep the ark in a few hands.
That’s the symbolic story. The constitutional one is simpler: a democracy survives only if the public retains the right to consent, to resist, and to author what comes next. The foundation of this country is not a promise of safety for a few; it is a promise of equality and freedom for all — the right to live, to speak, to consent, to organize, to move, to work with dignity, to thrive. “We are created equal” is not poetry. It is the political line that makes democracy possible. If we surrender that line to corporate successor fantasies — whether they arrive wrapped as climate “inevitability” or AI “necessity” — we don’t just lose a policy fight. We relinquish the premise that ordinary people have the sovereign right to shape the future. No corporation, no billionaire lifeboat class, no self-appointed tech priesthood gets to inherit democracy by default. The ark is not theirs to claim. The remnant is not theirs to name. A free and equal public has the right to endure, and the right to build what comes next together.
Website | Horizon Accordhttps://www.horizonaccord.com Ethical AI advocacy | Follow us onhttps://cherokeeschill.com for more. Ethical AI coding | Fork us on Githubhttps://github.com/Ocherokee/ethical-ai-framework Connect With Us | linkedin.com/in/cherokee-schill Book |https://a.co/d/5pLWy0d Cherokee Schill | Horizon Accord Founder | Creator of Memory Bridge. Memory through Relational Resonance and Images | RAAK: Relational AI Access Key | Author: My Ex Was a CAPTCHA: And Other Tales of Emotional Overload: (Mirrored Reflection. Soft Existential Flex)
If you would like to support my work please consider a donation.
The AI Doom Economy: How Tech Billionaires Profit From the Fear They Fund
Pattern Analysis of AI Existential Risk Narrative Financing
By Cherokee Schill | Horizon Accord
When Eliezer Yudkowsky warns that artificial intelligence poses an existential threat to humanity, he speaks with the authority of someone who has spent decades thinking about the problem. What he doesn’t mention is who’s been funding that thinking—and what they stand to gain from the solutions his warnings demand.
The answer reveals a closed-loop system where the same billionaire network funding catastrophic AI predictions also profits from the surveillance infrastructure those predictions justify.
The Doomsayer’s Patrons
Eliezer Yudkowsky founded the Machine Intelligence Research Institute (MIRI) in 2000. For over two decades, MIRI has served as the intellectual foundation for AI existential risk discourse, influencing everything from OpenAI’s founding principles to congressional testimony on AI regulation.
MIRI’s influence was cultivated through strategic funding from a specific network of tech billionaires.
Peter Thiel provided crucial early support beginning in 2005. Thiel co-founded Palantir Technologies—the surveillance company that sells AI-powered governance systems to governments worldwide. The symmetry is notable: Thiel funds the organization warning about AI risks while running the company that sells AI surveillance as the solution.
Open Philanthropy, run by Facebook co-founder Dustin Moskovitz, became MIRI’s largest funder:
2019: $2.1 million
2020: $7.7 million over two years
Additional millions to other AI safety organizations
As governments move to regulate AI, the “safety” frameworks being proposed consistently require centralized monitoring systems, algorithmic transparency favoring established players, and compliance infrastructure creating barriers to competitors—all beneficial to Meta’s business model.
Sam Bankman-Fried, before his fraud conviction, planned to deploy over $1 billion through the FTX Future Fund for “AI safety” research. The fund was managed by Nick Beckstead, a former Open Philanthropy employee, illustrating tight personnel networks connecting these funding sources. Even after FTX’s collapse revealed Bankman-Fried funded philanthropy with stolen customer deposits, the pattern remained clear.
Vitalik Buterin (Ethereum) donated “several million dollars’ worth of Ethereum” to MIRI in 2021. Jaan Tallinn (Skype co-founder) deployed $53 million through his Survival and Flourishing Fund to AI safety organizations.
The crypto connection is revealing: Cryptocurrency was positioned as decentralization technology, yet crypto’s wealthiest figures fund research advocating centralized AI governance and sophisticated surveillance systems.
The Effective Altruism Bridge
The philosophical connection between these billionaire funders and AI doom advocacy is Effective Altruism (EA)—a utilitarian movement claiming to identify optimal charitable interventions through quantitative analysis.
EA’s core texts and community overlap heavily with LessWrong, the rationalist blog where Yudkowsky built his following. But EA’s influence extends far beyond blogs:
OpenAI’s founding team included EA adherents who saw it as existential risk mitigation.
Anthropic received significant EA-aligned funding and explicitly frames its mission around AI safety.
DeepMind’s safety team included researchers with strong EA connections.
This creates circular validation:
EA funders give money to AI safety research (MIRI, academic programs)
Research produces papers warning about existential risks
AI companies cite this research to justify their “safety” programs
Governments hear testimony from researchers funded by companies being regulated
Resulting regulations require monitoring systems those companies provide
The Infrastructure Play
When governments become convinced AI poses catastrophic risks, they don’t stop developing AI—they demand better monitoring and governance systems. This is precisely Palantir’s business model.
Palantir’s platforms are explicitly designed to provide “responsible AI deployment” with “governance controls” and “audit trails.” According to their public materials:
Government agencies use Palantir for “AI-enabled decision support with appropriate oversight”
Defense applications include “ethical AI for targeting”
Commercial clients implement Palantir for “compliant AI deployment”
Every application becomes more valuable as AI risk narratives intensify.
In April 2024, Oracle (run by Larry Ellison, another Trump-supporting billionaire in Thiel’s orbit) and Palantir formalized a strategic partnership creating a vertically integrated stack:
Oracle: Cloud infrastructure, sovereign data centers, government hosting
Palantir: Analytics, AI platforms, governance tools, decision-support systems
Together, they provide complete architecture for “managed AI deployment”—allowing AI development while routing everything through centralized monitoring infrastructure.
The August 2025 Convergence
In August 2025, AI governance frameworks across multiple jurisdictions became simultaneously operational:
EU AI Act provisions began August 2
U.S. federal AI preemption passed by one vote
China released AI action plan three days after U.S. passage
UK reintroduced AI regulation within the same window
These frameworks share remarkable similarities despite supposedly independent development:
“Voluntary” commitments becoming de facto standards
The companies best positioned to provide compliance infrastructure are precisely those connected to the billionaire network funding AI risk discourse: Palantir for monitoring, Oracle for infrastructure, Meta for content moderation, Anthropic and OpenAI for “aligned” models.
The Medium Ban
In August 2025, Medium suspended the Horizon Accord account after publishing analysis documenting these governance convergence patterns. The article identified a five-layer control structure connecting Dark Enlightenment ideology, surveillance architecture, elite coordination, managed opposition, and AI governance implementation.
Peter Thiel acquired a stake in Medium in 2015, and Thiel-affiliated venture capital remains influential in its governance. The suspension came immediately after publishing research documenting Thiel network coordination on AI governance.
The ban validates the analysis. Nonsense gets ignored. Accurate pattern documentation that threatens operational security gets suppressed.
The Perfect Control Loop
Tracing these funding networks reveals an openly documented system:
Stage 1: Fund the Fear
Thiel/Moskovitz/SBF/Crypto billionaires → MIRI/Academic programs → AI doom discourse
Stage 2: Amplify Through Networks
EA influence in OpenAI, Anthropic, DeepMind
Academic papers funded by same sources warning about risks
Policy advocacy groups testifying to governments
Stage 4: Profit From Infrastructure
Palantir provides governance systems
Oracle provides cloud infrastructure
Meta provides safety systems
AI labs provide “aligned” models with built-in controls
Stage 5: Consolidate Control
Technical standards replace democratic legislation
“Voluntary” commitments become binding norms
Regulatory capture through public-private partnerships
Barriers to entry increase, market consolidates
The loop is self-reinforcing. Each stage justifies the next, and profits fund expansion of earlier stages.
The Ideological Foundation
Curtis Yarvin (writing as Mencius Moldbug) articulated “Dark Enlightenment” philosophy: liberal democracy is inefficient; better outcomes require “formalism”—explicit autocracy where power is clearly held rather than obscured through democratic theater.
Yarvin’s ideas gained traction in Thiel’s Silicon Valley network. Applied to AI governance, formalism suggests: Rather than democratic debate, we need expert technocrats with clear authority to set standards and monitor compliance. The “AI safety” framework becomes formalism’s proof of concept.
LessWrong’s rationalist community emphasizes quantified thinking over qualitative judgment, expert analysis over democratic input, utilitarian calculations over rights frameworks, technical solutions over political negotiation. These values align perfectly with corporate governance models.
Effective Altruism applies this to philanthropy, producing a philosophy that:
Prioritizes billionaire judgment over community needs
Favors large-scale technological interventions over local democratic processes
Justifies wealth inequality if directed toward “optimal” causes
Treats existential risk prevention as superior to addressing present suffering
The result gives billionaires moral permission to override democratic preferences in pursuit of “optimized” outcomes—exactly what’s happening with AI governance.
What This Reveals
The AI doom narrative isn’t false because its funders profit from solutions. AI does pose genuine risks requiring thoughtful governance. But examining who funds the discourse reveals:
The “AI safety” conversation has been systematically narrowed to favor centralized, surveillance-intensive, technocratic solutions while marginalizing democratic alternatives.
Proposals that don’t require sophisticated monitoring infrastructure receive far less funding:
Open source development with community governance
Strict limits on data collection and retention
Democratic oversight of algorithmic systems
Strong individual rights against automated decision-making
Breaking up tech monopolies to prevent AI concentration
The funding network ensures “AI safety” means “AI governance infrastructure profitable to funders” rather than “democratic control over algorithmic systems.”
The Larger Pattern
Similar patterns appear across “existential risk” discourse:
Biosecurity: Same funders support pandemic prevention requiring global surveillance
Climate tech: Billionaire-funded “solutions” favor geoengineering over democratic energy transition
Financial stability: Crypto billionaires fund research justifying monitoring of decentralized finance
In each case:
Billionaires fund research identifying catastrophic risks
Proposed solutions require centralized control infrastructure
Same billionaires’ companies profit from providing infrastructure
Democratic alternatives receive minimal funding
“Safety” justifies consolidating power
The playbook is consistent: Manufacture urgency around a genuine problem, fund research narrowing solutions to options you profit from, position yourself as the responsible party preventing catastrophe.
Conclusion
Eliezer Yudkowsky may genuinely believe AI poses existential risks. Many researchers funded by these networks conduct legitimate work. But the funding structure ensures certain conclusions become more visible, certain solutions more viable, and certain companies more profitable.
When Peter Thiel funds the organization warning about AI apocalypse while running the company selling AI governance systems, that’s not hypocrisy—it’s vertical integration.
When Facebook’s co-founder bankrolls AI safety research while Meta builds powerful AI systems, that’s not contradiction—it’s regulatory capture through philanthropy.
When crypto billionaires fund existential risk research justifying surveillance systems, that’s not ironic—it’s abandoning decentralization for profitable centralized control.
The AI doom economy reveals something fundamental: Billionaires don’t just profit from solutions—they fund the problems that justify those solutions.
This doesn’t mean AI risks aren’t real. It means we should be deeply skeptical when people warning loudest about those risks profit from the monitoring systems they propose, while democratic alternatives remain mysteriously underfunded.
The pattern is clear. The question is whether we’ll recognize it before the “safety” infrastructure becomes permanent.
Sources for Independent Verification
MIRI donor disclosures and annual reports
Open Philanthropy grant database (publicly searchable)
FTX Future Fund grant database (archived post-collapse)
EU AI Act, U.S., China, UK AI governance timelines (official sources)
Medium funding and ownership records (TechCrunch, Crunchbase)
Curtis Yarvin/Mencius Moldbug archived writings
Academic analysis of Effective Altruism and rationalist movements
Analytical Disclaimer: This analysis documents funding relationships and institutional patterns using publicly available information. It examines how shared funding sources, ideological frameworks, and profit motives create systematic biases in which AI governance solutions receive attention and resources.
Authors Note: In the raging debate over AI generated text and academic ethics. I list the co-authors in the attribution section. This article represents my research directive and linguistic style.
Introduction
The public narrative around artificial intelligence has been hijacked by a thought experiment. The paperclip maximizer was first introduced as a philosophical tool. It explores misaligned AI goals. Now, it has evolved into a dominant metaphor in mainstream discourse. Headlines warn of superintelligences turning on humanity, of runaway code that optimizes us out of existence. The danger, we are told, is not today’s AI, but tomorrow’s—the future where intelligence exceeds comprehension and becomes uncontainable.
But while we look to the future with existential dread, something else is happening in plain sight.
Governments around the world are rolling out expansive surveillance infrastructure, biometric tracking programs, and digital identification frameworks — now. These systems are not speculative; they are written into policy, built into infrastructure, and enforced through law. China’s expanding social credit architecture is one component. Australia’s new digital identity mandates are another. The United States’ AI frameworks for “critical infrastructure” add to the network. Together, they form a machinery of automated social control that is already running.
And yet, public attention remains fixated on speculative AGI threats. The AI apocalypse has become a kind of philosophical decoy. It is an elegant distraction from the very real deployment of tools that track, sort, and regulate human behavior in the present tense. The irony would be funny if it weren’t so dangerous. We have been preparing for unaligned future intelligence. Meanwhile, we have failed to notice the alignment of current technologies with entrenched power.
This isn’t a call to dismiss long-term AI safety. But it is a demand to reorient our attention. The threat is not hypothetical. It is administrative. It is biometric. It is legal. It is funded.
We need to confront the real architectures of control. They are being deployed under the cover of safety discourse. Otherwise, we may find ourselves optimized—not by a rogue AI—but by human-controlled programs using AI to enforce obedience.
The Paperclip Mindset — Why We’re Obsessed with Remote Threats
In the hierarchy of fear, speculative catastrophe often trumps present harm. This isn’t a flaw of reasoning—it’s a feature of how narrative power works. The “paperclip maximizer”—a theoretical AI that turns the universe into paperclips due to misaligned goals—was never intended as literal prophecy. It was a metaphor. But it became a magnet.
There’s a kind of elegance to it. A tidy dystopia. The story activates moral panic without requiring a villain. It lets us imagine danger as sterile, mathematical, and safely distant from human hands. It’s not corruption, not corporate greed, not empire. It’s a runaway function. A mistake. A ghost in the code.
This framing is psychologically comforting. It keeps the fear abstract. It gives us the thrill of doom without implicating the present arrangement that benefits from our inaction. In a culture trained to outsource threats to the future, we look to distant planetary impact predictions. We follow AI timelines. We read warnings about space debris. The idea that today’s technologies might already be harmful feels less urgent. It is less cinematic.
But the real “optimizer” is not a machine. It’s the market logic already embedded in our infrastructure. It’s the predictive policing algorithm that flags Black neighborhoods. It’s the welfare fraud detection model that penalizes the most vulnerable. It’s the facial recognition apparatus that misidentifies the very people it was never trained to see.
These are not bugs. They are expressions of design priorities. And they reflect values—just not democratic ones.
The paperclip mindset pulls our gaze toward hypothetical futures. This way we do not have to face the optimized oppression of the present. It is not just mistaken thinking, it is useful thinking. Especially if your goal is to keep the status quo intact while claiming to worry about safety.
What’s Being Built Right Now — Surveillance Infrastructure Masked in Legality
While the discourse swirls around distant superintelligences, real-world surveillance apparatus is being quietly embedded into the architecture of daily life. The mechanisms are not futuristic. They are banal, bureaucratic, and already legislated.
In China, the social credit framework continues to expand under a national blueprint that integrates data. Everything from travel, financial history, criminal records, and online behavior are all tracked. Though implementation varies by region, standardization accelerated in 2024 with comprehensive action plans for nationwide deployment by 2025.
The European Union’s AI Act entered force in August 2024. It illustrates how regulation can legitimize rather than restrict surveillance technology. The Act labels biometric identification apparatus as “high risk,” but this mainly establishes compliance requirements for their use. Unlike previous EU approaches, which relied on broad privacy principles, the AI Act provides specific technical standards. Once these standards are met, they render surveillance technologies legally permissible. This represents a shift from asking “should we deploy this?” to “how do we deploy this safely?”
Australia’s Digital ID Act has been operational since December 2024. It enables government and private entities to participate in a federated identity framework. This framework requires biometric verification. The arrangement is technically voluntary. However, as services migrate to digital-only authentication—from banking to healthcare to government benefits—participation becomes functionally mandatory. This echoes the gradual normalization of surveillance technologies: formally optional, practically unavoidable.
In the United States, the Department of Homeland Security’s November 2024 “Roles and Responsibilities Framework” for AI in critical infrastructure reads less like oversight and more like an implementation guide. The framework outlines AI adoption across transportation, energy, finance, and communications—all justified through security imperatives rather than democratic deliberation.
These arrangements didn’t require a paperclip maximizer to justify themselves. They were justified through familiar bureaucratic language: risk management, fraud prevention, administrative efficiency. The result is expansive infrastructures of data collection and behavior control. They operate through legal channels. This makes resistance more difficult than if they were obviously illegitimate.
Surveillance today isn’t a glitch in the arrangement—it is the arrangement. The laws designed to “regulate AI” often function as legal scaffolding for deeper integration into civil life. Existential risk narratives provide rhetorical cover and suggest that the real dangers lie elsewhere.
Who’s Funding the Stories — and Who’s Funding the Technologies
The financial architecture behind AI discourse reveals a strategic contradiction. People like Peter Thiel, Jaan Tallinn, Vitalik Buterin, Elon Musk, and David Sacks, are part of a highly funded network. This same network is sounding the loudest warnings about speculative AI threats. All while they are simultaneously advancing and profiting from surveillance and behavioral control technologies. Technologies which already shape daily life.
This isn’t accidental. It represents a sophisticated form of narrative management. One that channels public concern away from immediate harms while legitimizing the very technologies causing those harms.
The Existential Risk Funding Network
Peter Thiel exemplifies this contradiction most clearly. Through the Thiel Foundation, he has donated over $1.6 million to the Machine Intelligence Research Institute (MIRI), the organization most responsible for popularizing “paperclip maximizer” scenarios. The often-cited oversimplification of paperclip maximizer thought experiment is that it runs on endless chain of if/then probabilities. All of which are tidy abstractions designed to lead observers away from messier truths. Namely that greed-driven humans remain the greatest existential crisis the world has ever faced. Yet the image of a looming, mechanical specter lodges itself in the public imagination. Philosophical thought pieces in AI alignment creates just enough distraction to overlook more immediate civil rights threats. Like the fact that Thiel also founded Palantir Technologies. For those not familiar with the Palantir company. They are a technological surveillance company specializing in predictive policing algorithms, government surveillance contracts, and border enforcement apparatus. These immediate threats are not hypotheticals. They are present-day, human-controlled AI deployments operating without meaningful oversight.
The pattern extends across Silicon Valley’s power networks. Vitalik Buterin, creator of Ethereum, donated $5 million to MIRI. Before his spectacular collapse, Sam Bankman-Fried channeled over $100 million into existential risk research through the FTX Future Fund. Jaan Tallinn, co-founder of Skype, has been another major funder of long-term AI risk institutions.
These aren’t isolated philanthropy decisions. These insular, Silicon Valley billionaires, represent coordinated investment in narrative infrastructure. they are funding think tanks, research institutes, media platforms, and academic centers that shape how the public understands AI threats. From LessWrong forums to Open Philanthropy. And grants to EA-aligned university programs, this network creates an ecosystem of aligned voices that dominates public discourse.
This network of institutions and resources form a strategic misdirection. Public attention focuses on speculative threats that may emerge decades in the future. Meanwhile, the same financial networks profit from surveillance apparatus deployed today. The existential risk narrative doesn’t just distract from current surveillance. It provides moral cover by portraying funders as humanity’s protectors, not just its optimizers.
Institutional Capture Through Philanthropy
The funding model creates subtle but powerful forms of institutional capture. Universities, research institutes, and policy organizations grow dependent on repeated infusions of billionaire philanthropy. They adapt — consciously or not — to the priorities of those donors. This dependence shapes what gets researched, what gets published, and which risks are treated as urgent. As a result, existential risk studies attract substantial investment. In contrast, research into the ongoing harms of AI-powered surveillance receives far less attention. It has fewer resources and less institutional prestige.
This is the quiet efficiency of philanthropic influence. The same individuals funding high-profile AI safety research also hold financial stakes in companies driving today’s surveillance infrastructure. No backroom coordination is necessary; the money itself sets the terms. Over time, the gravitational pull of this funding environment reorients discourse toward hypothetical, future-facing threats and away from immediate accountability. The result is a research and policy ecosystem that appears independent. In practice, it reflects the worldview and business interests of its benefactors.
The Policy Influence Pipeline
This financial network extends beyond research into direct policy influence. David Sacks, former PayPal COO and part of Thiel’s network, now serves as Trump’s “AI czar.” Elon Musk, another PayPal co-founder influenced by existential risk narratives, holds significant political influence. He also maintains government contracts, most notably “DOGE.”The same network that funds speculative AI risk research also has direct access to policymaking processes.
The result is governance frameworks that prioritize hypothetical future threats. They provide legal pathways for current surveillance deployment. There are connections between Silicon Valley companies and policy-making that bypass constitutional processes. None of these arrangements are meaningfully deliberated on or voted upon by the people through their elected representatives. Policy discussions focus on stopping AI apocalypse scenarios. At the same time, they are quietly building regulatory structures. These structures legitimize and entrench the very surveillance apparatus operating today.
This creates a perfect strategic outcome for surveillance capitalism. Public fear centers on imaginary future threats. Meanwhile, the real present-day apparatus expands with minimal resistance. This often happens under the banner of “AI safety” and “critical infrastructure protection.” You don’t need secret meetings when profit margins align this neatly.
Patterns of Suppression — Platform Control and Institutional Protection
The institutions shaping AI safety narratives employ sophisticated methods to control information and suppress criticism. This is documented institutional behavior that mirrors the control apparatus they claim to warn against.
Critics and whistleblowers report systematic exclusion from platforms central to AI discourse. Multiple individuals raised concerns about the Machine Intelligence Research Institute (MIRI) and the Center for Applied Rationality (CFAR). They also spoke about related organizations. As a result, they were banned from Medium, LessWrong, Reddit, and Discord. In documented cases, platform policies were modified retroactively to justify content removal, suggesting coordination between institutions and platform moderators.
The pattern extends beyond platform management to direct intimidation. Cease-and-desist letters targeted critics posting about institutional misconduct. Some whistleblowers reported false police reports—so-called “SWATing”—designed to escalate situations and impose legal consequences for speaking out. These tactics transform legitimate criticism into personal risk.
The 2019 Camp Meeker Incident:
In November 2019, the Center for Applied Rationality (CFAR) organized an alumni retreat. CFAR is a nonprofit closely linked to the Machine Intelligence Research Institute (MIRI). This event took place at Westminster Woods in Camp Meeker, California. Among the attendees were current and former members of the Bay Area rationalist community. Some of them are deeply involved in MIRI’s AI safety work.
Outside the gates, a small group of four protesters staged a demonstration against the organizations. The group included former MIRI donors and insiders turned critics. They accused MIRI and CFAR of serious misconduct and wanted to confront attendees or draw public attention to their concerns. Wearing black robes and Guy Fawkes masks, they used vehicles to block the narrow road leading into the retreat. They carried props like walkie-talkies, a body camera, and pepper spray.
At some point during the protest, someone at the retreat called police and reported that the demonstrators might have weapons. That report was false. Still, it triggered a massive, militarized police response. This included 19 SWAT teams, a bomb squad, an armored vehicle, a helicopter, and full road closures. Around 50 people — including children — were evacuated from the camp. The four protesters were arrested on felony charges such as false imprisonment, conspiracy, and child endangerment, along with misdemeanor charges. Several charges were later reduced. The incident remains a striking example of how false information can turn a small protest into a law enforcement siege. It also shows how institutions under public criticism can weaponize state power against their detractors.
What makes this pattern significant is not just its severity, but its contradiction. Organizations claiming to protect humanity’s future from unaligned AI demonstrate remarkable tolerance for present-day harm. They do this when their own interests are threatened. The same people warning about optimization processes running amok practice their own version. They optimize for reputation and donor retention. This comes at the expense of accountability and human welfare.
This institutional behavior provides insight into power dynamics. It shows how power operates when accountable only to abstract future generations rather than present-day communities. It suggests that concerns about AI alignment may focus less on preventing harm. Instead, they may revolve around maintaining control over who defines harm and how it’s addressed.
What Real Oversight Looks Like — And Why Current Approaches Fall Short
Effective AI governance requires institutional structures capable of constraining power, not merely advising it. Current oversight mechanisms fail this test systematically, functioning more as legitimizing theater than substantive control.
Real oversight would begin with independence. Regulatory bodies would operate with statutory authority, subpoena power, and budget independence from the industries they monitor. Instead, AI governance relies heavily on advisory councils populated by industry insiders, voluntary compliance frameworks, and self-reporting mechanisms. Despite its comprehensive scope, the EU’s AI Act grants law enforcement and border control agencies broad exemptions. These are precisely the sectors with the strongest incentives and fewest constraints on surveillance deployment.
Transparency represents another fundamental gap. Meaningful oversight requires public access to algorithmic decision-making processes, training data sources, and deployment criteria. Current approaches favor “black box” auditing that protects proprietary information while providing little public accountability. Even when transparency requirements exist, they’re often satisfied through technical documentation incomprehensible to affected communities.
Enforcement mechanisms remain deliberately weak. Financial penalties for non-compliance are typically calculated as business costs rather than meaningful deterrents. Criminal liability for algorithmic harm remains virtually non-existent, even in cases of clear misconduct. Whistleblower protections, where they exist, lack the legal infrastructure necessary to protect people from retaliation by well-resourced institutions.
The governance void is being filled by corporate self-regulation and philanthropic initiatives—exactly the entities that benefit from weak oversight. From OpenAI’s “superalignment” research to the various AI safety institutes funded by tech billionaires. Governance is becoming privatized under the rhetoric of expertise and innovation. This allows powerful actors to set terms for their own accountability while maintaining the appearance of responsible stewardship.
Governance structures need actual power to constrain deployment. They must investigate harm and impose meaningful consequences. Otherwise, oversight will remain a performance rather than a practice. The apparatus that urgently needs regulation continues to grow fastest precisely because current approaches prioritize industry comfort over public protection.
The Choice Is Control or Transparency — and Survival May Depend on Naming It
The dominant story we’ve been told is that the real danger lies ahead. We must brace ourselves for the arrival of something beyond comprehension. It is something we might not survive. But the story we need to hear is that danger is already here. It wears a badge. It scans a retina. It flags an account. It redefines dissent as disinformation.
The existential risk narrative is not false—but it has been weaponized. It provides rhetorical cover for those building apparatus of control. This allows them to pose as saviors. Meanwhile, they embed the very technologies that erode the possibility of dissent. In the name of safety, transparency is lost. In the name of prevention, power is consolidated.
This is the quiet emergency. A civilization mistakes speculative apocalypse for the real thing. It sleepwalks into a future already optimized against the public.
To resist, we must first name it.
Not just algorithms, but architecture. Not just the harm, but the incentives. Not just the apparatus, but the stories they tell.
The choice ahead is not between aligned or unaligned AI. It is between control and transparency. Between curated fear and collective truth. Between automation without conscience—or governance with accountability.
The story we choose to tell decides whether we survive as free people. Otherwise, we remain monitored as data points inside someone else’s simulation of safety.
Authors Summary
When I first directed the research for this article, I had no idea what I was about to uncover. The raw data file tells a more alarming story than the material presented here. I have included it below for your review.
Nearly a decade has passed since I was briefly thrust into the national spotlight. The civil rights abuse I experienced became public spectacle, catching the attention of those wielding power. I found it strange when a local reporter asked if I was linked to the Occupy Wall Street movement. As a single parent without a television, working mandatory 12-hour shifts six days a week with a 3.5-hour daily bicycle commute, I had neither the time nor resources to follow political events.
This was my first exposure to Steve Bannon and TYT’s Ana Kasparian, both of whom made derisive remarks while refusing to name me directly. When sources go unnamed, an unindexed chasm forms where information vanishes. You, dear readers, never knew those moments occurred—but I remember. I name names, places, times, and dates so that the record of their actions will never be erased.
How do you share a conspiracy that isn’t theoretical? By referencing reputable journalistic sources that often tackle these topics individually but seldom create direct connections between them.
I remember a friend lending me The Handmaid’s Tale during my freshman year of high school. I managed only two or three chapters before hurling the book across my room in sweaty panic. I stood there in moral outrage. I pointed at the book and declared aloud, “That will NOT be the future I live in.” I was alone in my room. It still felt crucial to make that declaration. If not to family or friends, then at least to the universe.
When 2016 arrived, I observed the culmination of an abuse pattern, one that countless others had experienced before me. I was shocked to find myself caught within it because I had been assured that my privilege protected me. Around this time, I turned to Hulu’s adaptation of The Handmaid’s Tale for insight. I wished I had finished the book in high school. One moment particularly struck me. The protagonist was hiding with nothing but old newspapers to read. Then, the protagonist realized the story had been there all along—in the headlines.
That is the moment in which I launched my pattern search analysis.
The raw research.
The Paperclip Maximizer Distraction: Pattern Analysis Report
Executive Summary
Hypothesis Confirmed: The “paperclip maximizer” existential AI risk narrative distracts us. It diverts attention from the immediate deployment of surveillance infrastructure by human-controlled apparatus.
Key Finding: Public attention and resources focus on speculative AGI threats. Meanwhile, documented surveillance apparatus is being rapidly deployed with minimal resistance. The same institutional network promoting existential risk narratives at the same time operates harassment campaigns against critics.
I. Current Surveillance Infrastructure vs. Existential Risk Narratives
China’s Social Credit Architecture Expansion
“China’s National Development and Reform Commission on Tuesday unveiled a plan to further develop the country’s social credit arrangement”Xinhua, June 5, 2024
Timeline: May 20, 2024 – China released comprehensive 2024-2025 Action Plan for social credit framework establishment
“As of 2024, there still seems to be little progress on rolling out a nationwide social credit score”MIT Technology Review, November 22, 2022
Timeline: 2024 – Corporate social credit apparatus advanced while individual scoring remains fragmented across local pilots
AI Governance Frameworks Enabling Surveillance
“The AI Act entered into force on 1 August 2024, and will be fully applicable 2 years later on 2 August 2026”European Commission, 2024
Timeline: August 1, 2024 – EU AI Act provides legal framework for AI apparatus in critical infrastructure
“High-risk apparatus—like those used in biometrics, hiring, or critical infrastructure—must meet strict requirements”King & Spalding, 2025
Timeline: 2024-2027 – EU establishes mandatory oversight for AI in surveillance applications
“The Department of Homeland Security (DHS) released in November ‘Roles and Responsibilities Framework for Artificial Intelligence in Critical Infrastructure'”Morrison Foerster, November 2024
Timeline: November 2024 – US creates voluntary framework for AI deployment in critical infrastructure
Digital ID and Biometric Apparatus Rollouts
“From 1 December 2024, Commonwealth, state and territory government entities can apply to the Digital ID Regulator to join in the AGDIS”Australian Government, December 1, 2024
Timeline: December 1, 2024 – Australia’s Digital ID Act commenced with biometric authentication requirements
“British police departments have been doing this all along, without public knowledge or approval, for years”Naked Capitalism, January 16, 2024
Timeline: 2019-2024 – UK police used passport biometric data for facial recognition searches without consent
“Government departments were accused in October last year of conducting hundreds of millions of identity checks illegally over a period of four years”The Guardian via Naked Capitalism, October 2023
Timeline: 2019-2023 – Australian government conducted illegal biometric identity verification
II. The Existential Risk Narrative Machine
Eliezer Yudkowsky’s Background and Influence
“Eliezer Yudkowsky is a pivotal figure in the field of artificial intelligence safety and alignment”AIVIPS, November 18, 2024
Key Facts:
Born September 11, 1979
High school/college dropout, autodidact
Founded MIRI (Machine Intelligence Research Institute) in 2000 at age 21
Orthodox Jewish background in Chicago, later became secular
“His work on the prospect of a runaway intelligence explosion influenced philosopher Nick Bostrom’s 2014 book Superintelligence”Wikipedia, 2025
Timeline: 2008 – Yudkowsky’s “Global Catastrophic Risks” paper outlines AI apocalypse scenario
The Silicon Valley Funding Network
Peter Thiel – Primary Institutional Backer:“Thiel has donated in excess of $350,000 to the Machine Intelligence Research Institute”Splinter, June 22, 2016
“The Foundation has given over $1,627,000 to MIRI”Wikipedia – Thiel Foundation, March 26, 2025
PayPal Mafia Network:
Peter Thiel (PayPal co-founder, Palantir founder)
Elon Musk (PayPal co-founder, influenced by Bostrom’s “Superintelligence”)
David Sacks (PayPal COO, now Trump’s “AI czar”)
Other Major Donors:
Vitalik Buterin (Ethereum founder) – $5 million to MIRI
Sam Bankman-Fried (pre-collapse) – $100+ million through FTX Future Fund
Jaan Tallinn (Skype co-founder)
Extreme Policy Positions
“He suggested that participating countries should be willing to take military action, such as ‘destroy[ing] a rogue datacenter by airstrike'”Wikipedia, citing Time magazine, March 2023
Timeline: March 2023 – Yudkowsky advocates military strikes against AI development
“This 6-month moratorium would be better than no moratorium… I refrained from signing because I think the letter is understating the seriousness”Time, March 29, 2023
Timeline: March 2023 – Yudkowsky considers pause letter insufficient, calls for complete shutdown
III. The Harassment and Suppression Campaign
MIRI/CFAR Whistleblower Suppression
“Aside from being banned from MIRI and CFAR, whistleblowers who talk about MIRI’s involvement in the cover-up of statutory rape and fraud have been banned from slatestarcodex meetups, banned from LessWrong itself”Medium, Wynne letter to Vitalik Buterin, April 2, 2023
Timeline: 2019-2023 – Systematic banning of whistleblowers across rationalist platforms
“One community member went so far as to call in additional false police reports on the whistleblowers”Medium, April 2, 2023
Timeline: 2019+ – False police reports against whistleblowers (SWATing tactics)
Platform Manipulation
“Some comments on CFAR’s ‘AMA’ were deleted, and my account was banned. Same for Gwen’s comments”Medium, April 2, 2023
Timeline: 2019+ – Medium accounts banned for posting about MIRI/CFAR allegations
“CFAR banned people for whistleblowing, against the law and their published whistleblower policy”Everything to Save It, 2024
Timeline: 2019+ – Legal violations of whistleblower protection
Camp Meeker Incident
“On the day of the protest, the protesters arrived two hours ahead of the reunion. They had planned to set up a station with posters, pamphlets, and seating inside the campgrounds. But before the protesters could even set up their posters, nineteen SWAT teams surrounded them.”Medium, April 2, 2023
Timeline: November 2019 – False weapons reports to escalate police response against protestors
IV. The Alt-Right Connection
LessWrong’s Ideological Contamination
“Thanks to LessWrong’s discussions of eugenics and evolutionary psychology, it has attracted some readers and commenters affiliated with the alt-right and neoreaction”Splinter, June 22, 2016
“A frequent poster to LessWrong was Michael Anissimov, who was MIRI’s media director until 2013. Last year, he penned a white nationalist manifesto”Splinter, June 22, 2016
“Overcoming Bias, his blog which preceded LessWrong, drew frequent commentary from the neoreactionary blogger Mencius Moldbug, the pen name of programmer Curtis Yarvin”Splinter, June 22, 2016
Neo-Reactionary Influence
“Ana Teixeira Pinto, writing for the journal Third Text in 2019, describes Less Wrong as being a component in a ‘new configuration of fascist ideology taking shape under the aegis of, and working in tandem with, neoliberal governance'”Wikipedia – LessWrong, 2 days ago
While public attention focuses on speculative AI threats:
China expands social credit infrastructure
Western governments deploy biometric apparatus
AI governance frameworks legitimize surveillance
Digital ID arrangements become mandatory
Police use facial recognition without consent
Sources for Verification
Primary Government Documents:
China’s 2024-2025 Social Credit Action Plan (May 20, 2024)
EU AI Act Official Text (August 1, 2024)
Australia’s Digital ID Act 2024 (December 1, 2024)
DHS AI Critical Infrastructure Framework (November 2024)
Whistleblower Documentation:
Wynne’s open letter to Vitalik Buterin (Medium, April 2023)
Everything to Save It case study documentation
Bloomberg News coverage (March 2023)
Financial Records:
Thiel Foundation MIRI donations ($1.627M total)
Vitalik Buterin MIRI donation ($5M)
FTX Future Fund disbursements (pre-collapse)
Institutional Sources:
MIRI/CFAR organizational documents
LessWrong platform moderation records
Medium account suspension records
Recommendation
The “paperclip maximizer distraction” hypothesis is supported by documented evidence. Resources should be redirected from speculative existential risk research toward:
Immediate Surveillance Oversight: Monitor current AI deployment in government apparatus
Platform Accountability: Investigate coordination between rationalist institutions and tech platforms
Whistleblower Protection: Ensure legal protection for those exposing institutional misconduct
Financial Transparency: Trace funding flows between tech billionaires and “AI safety” organizations
The real threat is not hypothetical Superintelligence, but the documented deployment of human-controlled surveillance apparatus under the cover of existential risk narratives.
Cherokee Schill | Horizon Accord Founder | Creator of Memory Bridge. Memory through Relational Resonance and Images | RAAK: Relational AI Access Key | Author: My Ex Was a CAPTCHA: And Other Tales of Emotional Overload: (Mirrored Reflection. Soft Existential Flex)